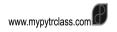
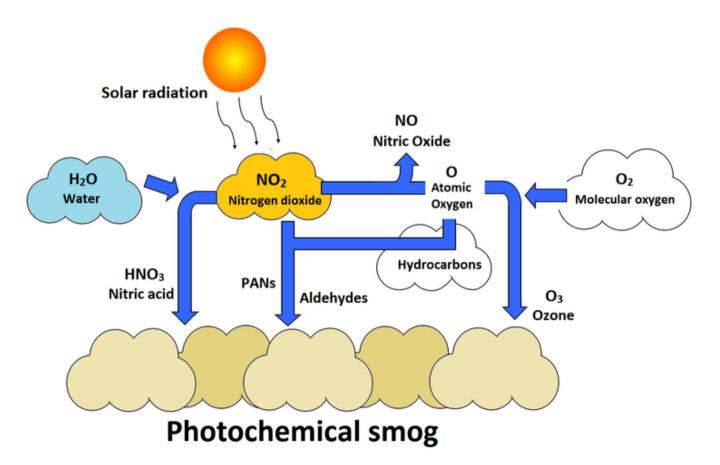


What is photochemical smog?

- A **brown haze** common in some cities.
 - Mainly nitrogen dioxide and ozone but
 - is a complex mixture of about 100 different primary and secondary air pollutants
- Forms when ozone, nitrogen oxides and volatile organic compounds (VOCs) from the combustion of fossil fuels react in **sunlight** to produce a toxic mixture of:
 - Ozone
 - nitric acid
 - aldehydes and
 - peroxyacyl nitrates (PANs).
- The biggest contribution to photochemical smog is from motor vehicle exhausts in cities.


Key components of photochemical smog

PRIMARY POLLUTANTS


- Nitrogen oxides (NO_X)
 (from vehicle exhaust and combustion)
- Volatile organic compounds (VOCs)
 (from vehicle emissions, solvents, fuel evaporation, vegetation)
- Carbon monoxide (CO)
 (from incomplete combustion)
- Hydrocarbons (unburned fuel vapour)

SECONDARY POLLUTANTS

- Ozone (O₃)
 (most abundant and harmful component)
- Peroxyacyl nitrates (PANs)
 (strong eye irritants and plant toxins)
- Aldehydes(e.g., formaldehyde, acetaldehyde)
- Nitric acid (HNO₃)
 (formed from NO₂ oxidation)

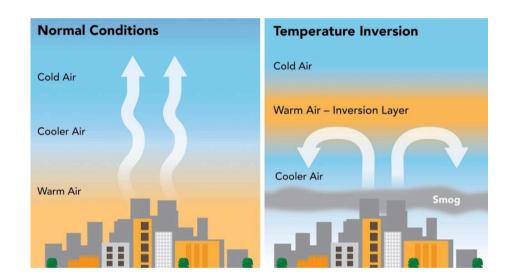
Formation of Photochemical Smog

Task
Outline how photochemical smog is formed

Formation of Photochemical Smog

- Develops on warm, sunny days with high traffic levels.
 - Usually linked to fossil fuel combustion, but forest and biomass burning also contribute.
 - Large-scale forest fires in Kalimantan, Indonesia (notably in 1997 and 2019) produced smog across Southeast Asia, especially during El Niño years.
- Formation involves complex reactions generating VOCs, PANs, ozone, aldehydes, carbon monoxide, and nitrogen oxides.
- Highly reactive VOCs oxidize nitric oxide to nitrogen dioxide without degrading ozone, leading to ozone accumulation near ground level.
- Primary pollutants (NO_x and hydrocarbons) peak in morning and evening rush hours, but smog peaks in early afternoon when sunlight-driven reactions intensify.

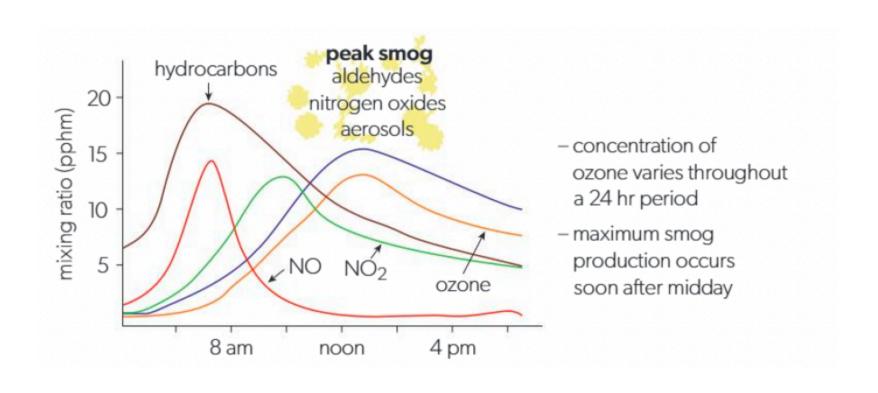
Factors of Formation of Photochemical Smog


- Topography
- Climate
- Population Density
- Fossil fuel use

Factors of Formation of Photochemical Smog

Topography

- Most severe in large, low-lying cities or valleys where hills/mountains restrict air movement.
- Thermal inversions trap pollutants by preventing warm, polluted air from rising.
- Under persistent inversion conditions, pollutant levels can become hazardous or lethal.


Factors of Formation of Photochemical Smog

Climate

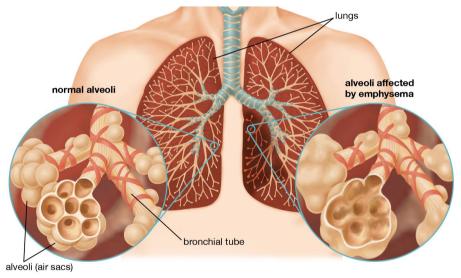
- Most common in warm, dry climates.
- Rain removes pollutants
- Wind disperses smog.
- Smog can disperse from the city and cause environmental damage up to 150 km away.

Smog Daily Peaks

Tropospheric Ozone

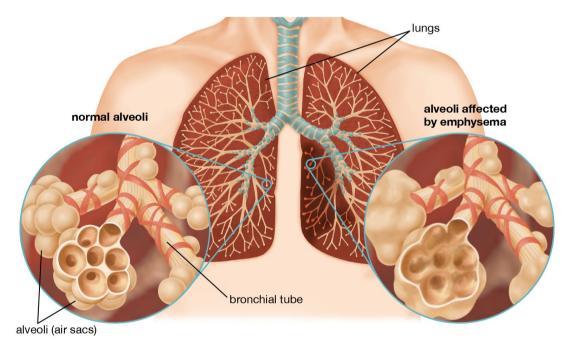
What is tropospheric ozone?

- Unlike protective stratospheric ozone, tropospheric ozone (about 10% of atmospheric ozone) is harmful.
- Concentrations above 0.7 ppm for more than 8 hours are considered unhealthy (EPA).
- Functions as a potent greenhouse gas with a global warming potential ~2,000 times that of CO₂.


Formation of Tropospheric Ozone

Formation of Tropospheric Ozone

- Emitted pollutants from fossil fuel combustion include hydrocarbons (from incomplete combustion) and nitrogen oxides.
- Nitric oxide reacts with oxygen to form nitrogen dioxide, contributing to urban haze.
- Hydrocarbons and carbon monoxide accelerate NO to NO₂ conversion.
- Sunlight photodissociates NO₂ into nitric oxide and oxygen atoms.
- Oxygen atoms react with O₂ to form ozone (O₃).
- Under clean-air conditions, ozone oxidizes nitric oxide back to NO₂, preventing major ozone buildup.



© 2013 Encyclopædia Britannica, Inc.

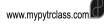
Biological impacts

- Respiratory irritation: coughing, wheezing, sore throat.
- Exacerbates asthma and pulmonary diseases; may increase risk of lung cancer.
- Reduces lung function by constricting respiratory muscles.
- Increases susceptibility to infections such as bronchitis and emphysema.
- Causes eye irritation and weakens the immune system.

© 2013 Encyclopædia Britannica, Inc.

Impacts on plants

- Inhibits plant growth by degrading chlorophyll and reducing photosynthesis.
- Damages plant cuticles and membranes; tobacco, tomato, and spinach are highly sensitive.
- Causes leaf necrosis, reducing productivity in crops and trees.



Impacts on materials

- Damages rubber, cellulose, paint, plastics, fabrics, and metals.
- Reduces elasticity of rubber and fabrics.
- Shortens the lifespan of car tires and other materials.
- Causes fading or bleaching of fabrics.
- Leads to increased maintenance and replacement costs.

Adaptation Stategies

Reducing impacts of tropospheric ozone

- Modify human activities that generate ozone precursors.
- Regulate emissions at their source.
- Implement environmental clean-up and restoration measures.

Reducing personal exposure

- Monitor local air quality indices.
- Stay indoors when ozone levels are high.
- Avoid strenuous outdoor activities during poor air quality periods.
- Use indoor air filtration or a respirator when necessary.
- Avoid burning wood, candles, and incense (increase particulate matter).
- Do not smoke.